TRANSIENT TEMPERATURE FILED IN LAMINATED ORTHOTROPIC CYLINDER
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A method based on the Green function is proposed for solving the problem of ther-
mal conductivity in a finite, laminated orthotropic cylinder. The temperature
field in a three-layer cylindrical wall containing a thermal insulation layer
characterized by low thermal conductivity is calculated.

Consider a finite, laminated hollow cylinder with a circular transverse cross section,
composed of an arbitrary number of concentric orthotropic layers with different thermophysi-
cal characteristics. We assume that perfect thermal contact exists between the cylinder
layers and that heat exchange with the ambient, which is at an assigned constant temperature,
occurs at the surfaces bounding the cylinder. The initial cyclinder temperature is equal
to t,.

We represent the thermophysical characteristics of this multilayer cylinder as a single
whole in the following form {1}:

n—1
p(r)=pi+ ¥ (P — PN S(r—r)), (1)

j=1
where Pj is the characteristic of the j-th layer, and n is the number of layers.

For determining the transient temperature field, we use the equation [1]
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Using Green's function, we represent the solution of problem (2)-(5) in the following
form [2]:
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Here, 7ﬁgf=tgér~tm while the Green function G(p, ¢ 7, 2z 1) (7" =1—1% is determined by means
of the equation

aG
LG = ¢, () — . : (7)
ot
The contact conditions are given by
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while the boundary conditjons are defined by
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In order to find the Green function, we apply to {7)-(10) the Fourier and Laplace inte-
gral transforms with respect to the variables z and t [3]. As a result, we obtain the ordi-
nary differential equation

I6=—Lo,@s¢—0 (11)
0
for the conditions
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@, (O)=Prcosil + hgsinfl , s is the Laplace transform parameter, and B;({ =1,2,..) are the
positive roots of the transcendental equation
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Solving by means of the method presented in [4] the homogeneous equation (11) for conditions
(12), we find
—G—o: cyfy (1) + caf2 (1),
where 2‘ (i,k) (k) (£,%) (I,m) (J-rl)
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c; are the integration constants, e*(r) and B¢®(r) are represented in the form given by
(1), ZP®)=Y;(x) and Z" ()= J(x) .

The solution of the nonhomogeneous equation {(11), obtained by variation of the constants,
assumes the following form after boundary conditions (13) are satisfied:
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Passing to inverse transforms and using the expansion theorem of operational calculus, we
obtain the final expression for the function after a number of transformations:
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Fig. 1. Maximum dimensionless tempera-
ture of the third layer 6=#t" as a func-
tion of t (sec) in the case of an ortho-

tropic (solid curve) and isotropic (dashed
curve) first layer.
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From the above relationships and on the basis of the modified Bessel functions, it fol-
lows that Mg, ,m belongs to the (BD; +o0)

interval, since Ay > 0 for u values from the
[0; p.D] segment. Here D=min{}y;a;/j=1, 2

)n}.

On the basis of (6) and (14), the temperature field of a laminated cylinder is determined
by the expression

b= 1,4 8,0, 2) + 8, (7, 2, ), (15)
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We represent in a simpler form the expression 0;(r, 2), which describes the steady-state

temperature distribution

)
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having solved the equation
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for contact conditions (3) and boundary condition (4). Here,
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In order to find (16), we used the Green function of the steady-state problem,
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)
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which satisfies the equation
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P

(16)

and conditions (8) and (9), which is obtained by using the same approach as in the case of

the Green function of the transient problem.
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Expressions (15) and (16) were used for calculating the temperature field in a three-
layer cylindrical wall of a power plant for

(1)
KY = 1500; K% =0.002; y;=2,14; y,=vs = 1; 62‘2) _5
Cu
(2)
C’,’a) = (.1; _r—q-=0,5; —Q—:O.g]; L2-=088, _fl_=2;
Co ry ry rs rs

By =20; By =0,67; hy=0; h, = o0; fo= 14 = {8 = 0K.

We also considered the case where the first layer was isotropic and the thermal conductiv-
ity coefficient defined by the relationship

A 1/)}"Aél).

Figure 1 provides the calculation results regarding the time in which the temperature
0.1 tgé) is reached in the third layer. If the first layer is orthotropic the time in which
this temperature reaches its maximum value at the point (r = r,, z = 0) amounts to 136 sec,
which is 28 sec less in comparison with the results of calculations without an allowance for
orthotropy.

NOTATION

t, cylinder temperature; A a7, ¥, a;, r; , thermal conductivity coefficients in the
radial and axial directions, volumetric specific heat, thermal diffusivity coefficient, and
the outside radius of the j-th lager, respectively; r,, radius of the inside surface of the

cylinder; H, cylinder height; tgée and h;, temperature of the medium and mean value of the

ratio of the heat-transfer coefficient to the normal component of the thermal conductivity
coefficient at the corresponding surfaces (i = 1, 2, 3, and 4), respectively; S(x), Heavi-
side unit function; 6(x) Dirac's delta function; &ix, Kronecker's symbol; J;j(x) and Y;(x),
i-order Bessel functions; I;j(x) and Kj(x), modified i-order Bessel functions; r, ¢, z,
cylindrical coordinates; t, time.
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